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Packet Switching in a  Multiaccess  Broadcast  Channel: 
Dynamic Control Procedures 

Abstract-In a companion paper [I], the rationale for multiaccess 
broadcast packet communication using  satellite and  ground  radio 
channels  has  been  discussed. Analytic tools for the performance 
evaluation and design of uncontrolled slotted ALOHA systems  have 
been presented. In this paper, a Markovian decision model is formu- 
lated for the dynamic  control of unstable  slotted ALOHA systems 
and  optimum decision  rules are found. Numerical results on the 
performance of controlled channels are shown for three specific 
dynamic channel control procedures. Several practical  control 
schemes are also proposed  and their performance  compared  through 
simulation. These dynamic control procedures have been found to 
be not only capable of preventing channel saturation for unstable 
channels but also capable of achieving a throughput-delay channel 
performance close  to  the theoretical optimum. 
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I. INTRODUCTION 

RENDS  in  the growth of computer-communication 
networks seem to indicate that  the next  generation of 

networks will be a t  least  an order of magnitude larger than 
existing designs. Present  implementations,  however,  are 
not  directly applicable to very large networks. New tech- 
niques are needed which can  provide cost-effective high- 
speed  communications for large  populations of (potentially 
mobile) users scattered  over wide geographical  areas. 
Under these circumstances, packet  switched  satellite 
and ground  radio  systems are emerging as  attractive solu- 
tions to  the design of computer-communication  networks 
and  terminal access networksj respectively [1)-[6]. The 
rationale for packet  switching  using  satellite and ground 
radio channels in a multiaccess  broadcast  mode  has  been 
examined in [l]. 

A multiaccess  broadcast  packet  switching  technique 
which has  attracted considerable attention  is  the  slotted 
ALOHA random access scheme [l>[lO]. This  paper  is  a 
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sequel to [I] in which an analytic model and a  methodo- 
logy for the performance  evaluation of (uncontrolled) 
slotted ALOHA channels were  developed. Specifically, a 
theory was proposed in [l] to explain the dynamic and 
stochastic  channel  behavior.  Stable and  unstable  channels 
have been  characterized.  The  trading  relations  among 
channel  stability,  channel  throughput,  and  average  packet 
delay were also shown. 

In  this  paper, we study  dynamic control  procedures  for 
unstable  slotted ALOHA channels. The  Markovian model 
formulated  in [l], [SI, [SI for a  slotted ALOHA system 
is first  introduced. Assuming that all  channel  users  have 
exact knowledge of the instantaneous  state of the system, 
three  dynamic  channel  control  procedures  are  described. 
A general  Markovian decision model is next  formulated 
by injecting  two classes of control  actions into  the  above 
model. State transition  costs  are defined so that  the channel 
performance  measures,  namely, the  stationary channel 
throughput  rate Sout and  the  stationary average  packet 
delay D, can  be expressed in  terms of the cost rates of the 
resulting Markovian decision processes. It is then shown 
that for the given model an optimal  control policy exists 
which is  a  stationary policy and which  maximizes Sout and 
minimizes D simultaneously. An efficient computational 
algorithm  for finding the optimal  control policy based 
upon Howard’s policy-iteration  method [ll], [l2] is next 
presented. The  three specific control  procedures,  namely, 
the  input control  procedure (ICP), the retransmission 
control  procedure (RCP) , and  the  input-retransmission 
control  procedure (IRCP) , are  then  studied  in more  detail. 
Both numerical and simulation  results are given for the 
throughput-delay  performance of such  controlled  slotted 
ALOHA channels. In  all cases considered, the optimal  con- 
trol policies were found to  be of the control  limit type. 
Next, we consider the  fact  that  the exact  instantaneous 
channel state is not  generally  known to individual  channel 
users. A scheme is proposed which estimates the channel 
state  and applies the above  optimal  control policies using 
this  estimate.  Another  retransmission  control  procedure 
which circumvents the  state estimation  problem  is also 
suggested.  These  practical  control  procedures are  then 
tested  through  simulation  and  have been found  to  be 
capable of achieving  a  throughput-delay  performance close 
to  the theoretical  optimum, as well as capable of prevent- 
ing  channel saturation  under  temporary overload condi- 
tions. 

11. PRELIMINARIES 

In  this section, we first  present the Markovian model 
formulated  in [l], [6], [S] for a  slotted ALOHA system. 
The  stability behavior of uncontrolled  slotted ALOHA 
channels  is then discussed. Following that, some  definitions 
are given  for Markov decision processes. The  three specific 
dynamic  channel  control  procedures are  then described. 
A general  formulation of the problem as a  Markovian de- 
cision model is given in Section 111. 

A. The  Markovian  Model for a  Slotted ALOHA System 

In a  slotted ALOHA system,  all  users  transmit  packets 
into  channel  time  slots  independently. If two or more 
packet  transmissions  overlap in  time at   the multiaccessed 
radio receiver, it is  assumed that none is received correctly. 
This  event  is  referred to  as a  channel collision. We  con- 
sider a  slotted ALOHA channel with a user population con- 
sisting of M users. Each such  user  can be  in one of two 
states: blocked or thinking.’ In  the thinking  state, a  user 
generates and  transmits a new packet  in  a  time  slot  with 
probability U. A packet which had a  channel collision and 
is waiting for retransmission is said to  be backlogged. The 
retransmission  delay RD of each backlogged packet  is as- 
sumed to be  geometrically  distributed,  i.e.,  each  back- 
logged packet retransmits  in  the  current  time slot  with 
probability p. Assuming bursty users, we must  have p >> cr. 
From  the  time a user generates  a  packet  until that  packet 
is successfully received, the user  is blocked in  the sense 
that he  cannot  generate (or accept  from his input source) 
a new packet for transmission. 

Let N t  be a  random  variable  (called channel  backlog) 
representing the  total  number of backlogged packets a t  
time t. The channel input  rate a t  time t is St  = ( M  - 
Nt)a.  Assuming M and u to be  time-invariant, N t  is  a 
Markov process (chain)  with  stationary  transition prob- 
abilities and serves  as the  state description for the system. 
As in [l], [SI, [SI, we assume that p is  given by 

1 
= R + ( K  + l ) /2  

where R is the number of time  slots  in  a  round-trip  channel 
propagation  delay  and the parameter K corresponds to 
the uniform retransmission  randomization  interval  in [4]. 

B. Channel  Stability 
Consider ( N t , S t )  in  the two-dimensional (n,S) plane. 

The  trajectory of ( N 1 , S t )  is  constrained to lie  on the 
straight  line S = ( M  - n) u which we refer to  as  the chan- 
nel load line. For  a fixed value of K (or p )  , there  is  an 
equilibrium  contour in  the (n,S) plane defined as  the locus 
of points for which the channel input  rate S is exactly 
equal  to  the expected  channel throughput Sout(n,S) in a 
time  slot [l], [SI,  [SI. One  such  contour is illustrated in 
Fig. 1. Note  that within the shaded region  enclosed by  the 
equilibrium  contour, So,,(n,S) is  greater  than S; else- 
where, S exceeds S o u ,  (n ,S)  . Three channel  load lines are 
also shown in Fig. 1 corresponding to  the channel user 
population sizes M ,  M’, and M“, and  an average user 
think  time of 1 / ~  slots.  Arrows  on the channel  load lines 
point  in the direction of “drift” of N t .  

A channel  load  line may  intersect  (nontangentially) the 
equilibrium  contour  one or more  times, and we refer to 

This model is similar to  the one studied by Metcalfe through a 
steady-state analysis [7]. He  has also recognized the need for channel 

probability of “ready”  packets. 
control and proposed a method for controlling the transmission 
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Fig. 1. Stable and unstable channels, 

these  as  equilibrium  points  denoted by (ne, S,) . An equili- 
brium  point on a  load  line  is  said to  be a stable equilibrium 
point if it  acts  as a  “sink”  with  respect to  the  drift of N t ;  
it is said to be an unstable  equilibrium.  point if it. acts  as a 
“source.” A stable  equilibrium  point  is  said to be a channel 
operating  point if ne 5 n,,, as shown in Fig. 1 ; it is said 
to be  a channel  saturation  point if ne > n,,,. (We shall 
use (n,,S,) instead of (n,,S,) to distinguish  a channel 
operating point from  other equilibrium  points.) A channel 
load  line is said to be stable if it has  exactly one stable 
equilibrium point; otherwise, it is said to be unstable. 
Thus,  the load lines labeled 1 and 3 in Fig. 1 are  stable  by 
definition; the load  line  labeled 2 is  unstable. In  a  stable 
channel, the equilibrium  point (ne,&) determines the 
steady-state  throughput-delay  performance of the channel 
over an infinite time horizon. On the  other  hand,  an un- 
stable  channel  exhibits  “bistable”  behavior; the  through- 
put-delay  performance given by  the channel  operating 
point is achievable  only for a finite time period before the 
channel  drifts  towards the channel saturation point. When 
this  happens, the channel performance degrades  rapidly  as 
the channel throughput  rate decreases and  the average 
packet  delay increases. The channel  load  line labeled 3 in 
Fig. 1 has  a  channel saturation point  as its only stable 
equilibrium  point. It is overloaded in  the sense that 64‘‘ 
is too big for the given u and K .  From now on, a stable 
channel  load line will always refer to 1 instead of 3 [l], 

In  Fig. 1, S,,, represents the maximum possible through- 
put  rate of the  slotted ALOHA channel.  For the infinite 
population model, S,,, was shown to be l / e  E 0.368 

Given a  channel  load line, suppose Kept is the  optimum 
K which minimizes no and maximizes So at  the channel 
operating point. For  this value of K ,  the channel may  be 

[SI, [SI. 

~31 ,  141. 

unstable, in which case the optimum  channel  performance 
given by (no,S,) is achievable  only for a finite time  period. 
To render the channel  stable,  two obvious solutions are 
available [l], [SI, [SI: 1) use a  larger  value for K ,  and 
2) a1.10~ a smaller user population size M .  The first solu- 
tion gives rise to a  larger no; the corresponding average 
packet  delay may  then be too  large to be acceptable [l]. 
In  the second solution,  a  small M implies that So << S,,, 
since u << 1 under  the assumption of bursty users. This 
results in a  waste of channel  capacity.  A third solution is 
the use of dynamic  channel  control which constitutes  the 
subject matter of this  paper. 

C. Markov  Decision  Processes [11]-[13] 

Consider the  Markov process (chain) N t  which is ob- 
served at  time  points t = 0,1,2, - - - to be in one of a 
finite number of states.  The  set of states S is labeled by 
the nonnegative  integers (O,l ,2 ,  - - . , M } .  Let a be a finite 
set of possible actions  such that corresponding to each ac- 
tion a a, a  set of state  transition probabilities { p i j ( a )  } and 
a  set of expected immediate costs { C,(a)  } are  uniquely 
specified. We define a policy f to  be any rule for choosing 
actions and 6 to  be  the class of all policies. The action 
chosen by a policy a t  time t may, for instance,  depend  on 
the complete history of the process up to  that point. 

Suppose the action at is given by  the policy f a t  time t ,  
which in  turn specifies the  state  transition probabilities 
and costs at  that time.  Thus, f determines both  the evolu- 
tion  in  time of the  Markov process N t  and  the sequence of 
costs it incurs. For a policy f which generates the following 
sequence of act,ions in time { a O , d , ( ~ ~ ,  - - .,at, - } we define 
the expected cost per unit  time for N t  which was initially 
in state i as 

1 

where the limit  always exists, since the costs  are assumed 
to be bounded;  the expectation is taken conditioning on 
the policy f. 

An important subclass of all policies is the class of sta- 
tionary policies 6,. A stationary  policy is defined to  be one 
which chooses an action at time t depending only on the 
state of the process a t  time t .  Thus, a  stationary policy f 
is a  function f (  .) : S+a. A  Markov decision process em- 
ploying a stationary policy f is  a  Markov process with sta- 
tionary  transition  probabilities. 

We  now state several well-known results for finite-state 
Markov decision processes employing stationary policies. 

Result 1: Given a stationary policy f such that N t  is 
irreducible we have 

di 

+i(f) = c Tj(f)Cj(f) & B ( f ) ,  vi = 0,1 , . -* ,M 
j=O 

(3) 
where { ?rj(f) ) is the unique  stationary  probability  distri- 
bution of N t  such that 
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M 

r j ( f )  = C r i ( f ) P ; j ( $ ) ,  J’ = 0,1,.*.,M 

Ti(!) 2 0, i = O , l , .  - *,ill/ 
d-0 

and 
M c T i ( ! )  = 1. 
i=O 

g(f)  is said to be the cost rate or expected cost per unit 
time of the process N ‘  using policy f. 

Result 6: If every  stationary policy gives rise to  an ir- 
reducible Markov chain, then  there exists a stationary 
policy f* which  is  optimal  over the class of all policies such 
that 

g(f*) = min+i(f), V i  = 0,1,-.-,M. 
f f @  

Thus,  by  the  above  results, we may  limit  our  attention 
only to  the class of stationary policies. We shall  present 
a computational  procedure (to  be described  below) based 
upon  Howard’s  policy-iteration  method [ll], [la] which 
evaluates the cost rate g(f) given  a stationary policy f 
and always  leads to  an optimal  stationary policy within  a 
finite  number of computational  steps. 

Within the class of stationary policies, a  subclass of 
policies known as control  limit policies can  be described as 
follows for  a  two-actioh  space a. Either  the policy specifies 
the same  action for all  states  in S or there  is a  critical 
state ri ( = 0,1,2, - -, or M - 1) such that if the policy 
specifies one  action  for  states 0 to ri, the other  action  is 
specified for states ri + 1 to M .  ri is  said to be the control 
limit. 

Finally, we assume that  at  any  time t all  channel  users 
have  perfect knowledge of the instantaneous  channel state 
(perfect  channel  state  information).  This  assumption  is 
necessary in  the  mathematical model, but will be relaxed 
when we consider practical  control  procedures  based  upon 
insights  gained  from the analysis. 

D. Dynamic Control  Procedures 
By a  channel  control  procedure we mean the set of ac- 

tions  in  the  action space a. Here we introduce  three 
channel  control  procedures which  will be  studied below in 
more  detail.  They  are special cases of the  Markovian deci- 
sion model in  the  next section. 

The   i npu t  control  procedure ( I C P )  : This control  pro- 
cedure  corresponds to.@ = { accept,  reject ] { a,r} . Thus, 
in  any  channel  state,  the possible actions are: accept  (ac- 
tion = a )  or  reject (action = r )  all new packets that 
arrive2  in the current  time  slot. 

A new packet is  said to arrive in the  current  time slot only after 
it  has been generated by  the channel user (or i t s  external source), 
processed, and ready for transmission over the channel  in the cur- 
rent  time slot. In  the  mathematical model, a rejected arrival is  lost 
and  the channel user generates a “new” packet in the next time  slot 
with  probability U. In a practical system,  this new packet  must 
actually  be  the previously rejected  packet! We shall elaborate upon 
this  interpretation  further below. 

The  retransmission control  procedure (RCP) : Under  this 
control procedure, the action space @ = {po ,pc )  {o,c} 
where p ,  and p ,  are said to  be  the operating and control 
values of the  retransmission  probability p .  (Through (1) , 
p ,  corresponds to KO which  optimizes the channel  operat- 
ing  point  and p ,  corresponds to Kc which is  large  enough 
to render the channel  stable  [l].) Obviously, we must  have 
p ,  < p,. Thus,  in  any channel state  the possible actions 
are: every backlogged packet is  retransmitted  in  the cur- 
rent  time slot with  probability p ,  (action = o) or with 
probability p ,  (action = c )  . 

The  iTlput-retransmission  control  procedure ( I R C P )  : 
This  control  procedure  is  a  combination of ICP  and  RCP 
with the action  space a = { (accept, p,) ,  (accept, p , ) ,  
(reject, p,), (reject, p,) } A {ao,ac,ro,rc}.  Thus, for ex- 
ample, when the action rc is taken,  both new and back- 
logged packets  are delayed. 

In Fig.  2 (a)  and (b) , we show channel  load lines cor- 
responding to channels  under ICP  and  RCP, respectively. 
We find it easier to illustrate  both cases with  control  limit 
policies. In Fig. 2 (a) ,  ri is the  ICP control  limit.  When 
N t  5 +i, the channel input  rate  is S t  = (ill - N t ) a ;  
when N t  > ri, S t  = 0. Similarly,  suppose +i is the  RCP 
control  limit in Fig. 2(b).  When N t  5 ri, K = KO, but  as 
soon as N t  exceeds +i, K = K,  is  used. Note  that  both con- 
trolled  channels are  stable  in the sense that  the channel 
saturation  point  as shown in  Fig. 1 no  longer exists. 

111. THE MARKOVIAN  DECISION  MODEL 

In this section,  a  Markovian decision model is formu- 
lated which includes as special cases ICP,  RCP,  and  IRCP 
introduced  above.  Expected  immediate  costs  are defined 
so that  the fundamental  channel  performance  measures, 
namely, the  stationary channel throughput  rate Sout and 
the  stationary  average  packet  delay D, can  be expressed 
in  terms of the cost rates of the resulting Markov decision 
processes. Finally, it will be  shown that  an optimal  sta- 
tionary policy maximizes ,Sout and minimizes D simul- 
taneously. 

A .  The Control  Action  Space 
Consider the action  space a, = {P1,P2,...,Pm) where 

0 5 < P z  < - - < Dm 5 1, and  the  action space a, = 

(y1,y2,- - ‘,Yk} where 0 < y1 < * < yk < 1. Let a = 

@I X a2 such that each  element in is a two-dimensional 
vector (P,r). As before, the  Markov decision process N t  has 
the finite  state space S = { 0,1,2, - - - , i l l}.  A stationary con- 
trol policy f maps S into a. Given  a stationary  control 
policy f, f(i) = @,y) means that whenever N t  = i, each 
(new)  packet  arrival is accepted  with  probability p (and 
rejected  with  probability 1 - p)  while each backlogged 
packet is retransmitted  with  probability y in the  tth  time 
slot.  Thus, ICP corresponds to  the special case @ = 

{ 0,l } X { p o )  ; RCP corresponds to  the special case @ = 

{ 1 } X ( po ,pc}  ; IRCP corresponds to  the special case = 

Suppose N t  is  in state i and  the  stationary control policy 
(0,l l  x { P o , P c l .  
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(a)  (b) 
Fig. 2. (a) ICP control limit policy example. (b) RCP control 

limit policy example. 

f ( i )  = (ply),  i t  is  easy to show that  the one-step state 
transition probabilities are given by 

I O1 
iy ( 1  - 7 )  1 - pa) M--i, 

895 

which  accounts for the  additional delays  incurred by re- 
jected packets.  Note that ( M  - i) (1  - p)u is the ex- 
pected  number of packets rejected in  the  tth  time  slot. 
d, is  the expected cost in  units of delay  per  packet arrival 
rejected. We shall  assume that d, is  equal to  an average 
user think  time, i.e., 

1 
d, = ;. (8) 

This assumption  is necessitated by our Markovian  model 
formulation  in which each  thinking user is  assumed to 
transmit  a new packet  (which may be  a  previously  rejected 
new packet)  with  probability u in a time  slot. In  an  actual 
system, this random  delay  may  be  machine-introduced if 
needed. 

j i i - 2  

, i = i - l  r ( I  - Y ) ~ ( M  - i )pu( l  - f [l - i y ( 1  - y)”l](l - Pu)”~, j = i 
Pii(f) = (4) 

[l - (1 - 7)i](M - i ) p a ( l  - Pu)M--i--l, .j = i +  1 

for 0 5 i, j 5 M .  

B. Cost Rates  and  Performance  Measures 

Suppose N t  is  in  state i and f(i) = (p , y ) .  We  define 
the expected  immediate cost C;(f) to be 

C4f) = -Sou&f) 

= -[iy(1 - 7)”’(1 - p u ) W  

+ (1  - T ) ~ ( M  - i )pu( l  - Pu)~-”’] (5) 

where Sout(i,f) is the expected  channel throughput3  in  the 
tth  time  slot.  By (3) the cost rate of N t  is 

g8(f) = - C Ti(f)Sout (i ,f) .  
M 

i=O 

Thus,  the  stationary channel throughput  rate  is given by 

Sout = - gs(f). ( 6 )  

Next, we show how to compute  the  stationary  average 
packet  delay D. Suppose N t  is  in  state i and f(i) = (Ply). 
For Dl we define the expected  immediate cost to be 

Ci(f) = i + (11.1 - i) (1 - p)ud, (7) 

where the  first  term i represents  a  “holding cost” which 
accounts for the waiting cost of i packets  incurred  in  the 
tth  time  slot;  the second term  represents  a “rejection cost” 

slot. 
Expected number of successful packet transmissions in a time 

Next,  let S = U2=lm& where &,&, - - -,Sm are  noninter- 
secting sets  induced by  the  stationary control policy f 
such  that 

f(i) = ( P z , ~ )  if and only if i E SI 

where 1 = 1,2, - - -,m and y is  any  action  in az. 
By (3) , the cost rate of N t  is 

= N + Xrdr 

= i v + N ,  (9) 

where 

is  the  stationary  packet rejection rate; N is  the average 
channel  backlog size, and f i r  is the average  number of re- 
jected  packets  in  the  system  by Little’s result [14]. 

Applying Little’s result  once  more,  the  average  “wasted 
time” of a  packet is 
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The average  packet  delay (in number of time  slots) is 
given by 

where R + 1 represents the transmission and channel 
propagation  delays  incurred by each successful packet 
transmission. 

Lemma: Given any  stationary control policy f :  S -+ a, 

Proof: From (3) ,  (7) ,  and (8) 
M 'lf 

gd(f) = C iri( f)  + ( M  - i)ri(f) 
i==O i = O  

1 "  
= M - - ( M  - i ) P l U T i ( f ) .  

I = I  i c S [  

Note  that Cz, lm zitS[ ( M  - i ) p z u r i ( f )  is just  the  sta- 
tionary channel input  rate  and is thus  equal  to  the  sta- 
tionary channel throughput  rate Sout = - g8(f). Hence, 

Q.E.D. 
Theorem: For  the above  Markovian decision model : 1) 

there exists a stationary policy f such that 

9 d ( j i )  = min Qd (f) 

S a ( P )  = min 8 s  (f) ; 

f f@.  

if and only if 

f f @ 8  

and 2 )  i f f  is a stationary policy satisfying the preceding 
condition, then f ^  minimizes D and  at  the same  time maxi- 
mizes Sout over the class 6 of all policies. 

Proof: 1) This is  a  direct consequence of the above 
lemma  and  Result 2. 2) By (6) and (12),  f minimizes D 
and maximizes Sout over the class of all stationary policies. 
The generalization to  the class 6 of all policies is a conse- 
quence of Result 2.  Q.E.D. 

C .  Optimum  Channel  Performance 
Applying (6) and (13) to  substitute for gd(f) and g, (f) 

in  (12), we have 

which relates D as a one-to-one function of Sout given fixed 
values of R, M ,  and u. Note  that  this function is mono- 
tonically decreasing with SOut. 

Assuming a fixed R, we shorn in Fig. 3 a  family of curves 
each of which depicts D as  a  function of Sout given by  (14). 
The  parameters A6 and u, which determine the channel 
load line, also define a  curve  in the two-dimensional space 
of the performance measures D and Sout. We may con- 
sider a given control  procedure  as  a  mathematical  operator 
which maps 6, (the space of all stationary policies) into 
one such  curve. Each f in 6, is mapped into one point on 
the curve. The range space of the operator  must  be a 
proper  subset of points on the curve. Otherwise, it is possi- 
ble that D = R + 1 and Sout = Mu (i.e., no congestion a t  
all!).  The optimization problem thus corresponds to find- 
ing the extreme  points  (maximum Sout and minimum D) 
of this range  space. Since the  curve  under consideration is 
monotonically decreasing, these  extreme  points coincide. 
Thus,  the same  control policy f must maximize Sout and 
minimize D simultaneously. 

Given  a family of channel load lines (e.g., M varying 
from 0 to 00 a t  fixed u or u varying from 0 to 1 a t  fixed 
M ) ,  each channel  control  procedure gives rise to  an in- 
feasible region such  as shown in Fig. 3. The  boundary of 
this region represents the  optimum channel  throughput- 
delay tradeoff under the above  constraints. 

IV. AN EFFICIENT  COMPUTATIONAL 
ALGORITHhil 

Given a  channel  control  procedure and a  channel  load 
line, we must determine the optimal  control policy and  the 
associated optimum  values for SOut and D. Howard's 
policy-iteration method described in [ll], [ lZ]  enables 
us to find an optimal policy usually in a  small  number of 
iterations.  The method  is composed of two parts: a value- 
determination  operation  and  a policy-improvement rou- 
tine.  The difficulty now arises in the solution of the fol- 
lowing ( M  + 1) linear  simultaneous  equations in  the 
value-determination  operation for the cost rate g and  the 
"relative values" vi (setting vo = 0) when M is  large (say, 
a few hundred, which is our  range of interest). 

M 

9 + vi = Ci + p i j ~ j ,  i = 0,1,2, * - , M .  (15) 
i=O 

If we take  advantage of the  fact  that  the  state  transition 
probabilities pij = 0 for j 5 i - 2 in  our model, we may 
solve the above  set of equations recursively using the fol- 
lowing algorithm. The derivation of the algorithm  is 
straightforward  and is given in [6]. 

Algorithm 1 : This algorithm solves for g and {vi) i,lM in 
the following set of ( M  + 1) linear  simultaneous  equa- 
tions : 

1l4 

9 = CO + C pojvj 
i=1 

M 

g + C1 + pljvj 
j=i 

M 

g + vi = Ci + p i j ~ y ,  i = 2,3, * . ,M 
j 4 - 1  
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Fig. 3. Optimum  performance of a channel  control  procedure. 

where 

The algorithm  is as follows. 
Step 1: Define 

1 M-1 

Step 3: Define 

1 M-1 

.\f 

CO + C Pojtoi 
j=1 

g, = " 1 vi = Uig + wi, i 1 , 2 , . * * , 6 1 .  

1 - pojuj 
j=1 

Algorithm 1 has  the  advantage that  the crucial variables 
bi and cli in  the algorithm  are  computed recursively such 
that  the  state transition  probabilities pcj can be computed 
as needed. This eliminates the need for storing  the 
{ [ ( M  + 1 )  ( M  + 2)]/2} + 14 elements in  the  state 
transition  matrix  and  virtually eliminates any machine 
storage  constraint on the dimensionality of the optimiza- 
tion problem. The  number of arithmetic  operations re- 
quired is comparable to  that of a standard solution  method 
such as Gauss  elimination [15].  

We  present below our  computational  procedure  (PO- 
LITE) for the  Markovian decision model, which combines 
the policy-iteration method, Algorithm 1, and  the above 
Lemma. Given a channel load line and a dynamic  channel 
control  procedure, POLITE finds the optimal  control 
policy and evaluates the  optimum channel performance 
measures. 

Algorithm 2 (POLITE) : 
Step 1 : Given a policy f, apply  Algorithm 1 to obtain g 

and {ui}i , lM; p i i ( f )  and C i ( f )  are  computed when needed 
in  the algorithm. 

Step 2: For  state i = 0,1,  * - - , M  define the  test 
quantity 

M 

Cost(i,a) = C,(a)  + Pi j (")" .  
j=1 

Find 6 such that Cost (i ,6) = Cost (i ,a) . If Cost 
(i,f(i)) = Cost(i,&),  then let f(i) = f(i) ; otherwise, let 

Step 3: Iff and f are  identical, go to  Step 4; otherwise, 

Step 4: f is an optimal  control  policy; g = qs(f) or 

Step 5: Applying (6) ,  (12), and (13) ,  the  optimum 

j ( i )  = 6. 

replace f by f and go to Step 1. 

gd( f )  depending on the expected immediate costs C,(a).  

performance measures  are 

souout* = - !Is (S) 

V. NUMERICAL  RESULTS 
Numerical  results  have been obtained for the  ICP, 

RCP,  and  IRCP control procedures using POLITE.  In 
this  section, we first discuss the  optimality of control 
limit policies. The performance of controlled channels 
under ICP,  RCP,  and  IRCP is then shown. More specific 
computational considerations are discussed in [SI, [lo]. 
A.  Control Limit Policies 

Consider ICP  and  RCP.  The action  space a of both 
control  procedures consists of two  actions (a,,a,}. a. is the Step  4: Finally, 
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operating  action, designed to give near  optimum  channel 
throughput-delay performance under  equilibrium condi- 
tions. a, corresponds to "accept" in  ICP  and p,  in  RCP. 
ac is the control  action, designed to prevent the channel 
from  drifting into  saturation. ac corresponds to "reject" 
in ICP  and p ,  in  RCP. 

Our  intuition  suggests that a good control policy (for 
either ICP or RCP)  must  be such that  the control action 
is applied whenever the channel backlog size N 1  exceeds 
some threshold  value to  prevent it from drifting  away. 
But as soon as N t  decreases below this threshold  value, 
the control  action  should be replaced by  the operating 
action for optimum  performance.  This  intuition  has been 
confirmed in  all  our numerical  solutions for ICP  and  RCP. 
In  each case, the  optimal control policy given by  POLITE 
is  a  control  limit policy of the following form: 

I a,, i 5 ri 

a,, i > T i  (16) 

where ri is  said to be the control  limit (CL) of the control 
limit policy f .  A rigorous proof of the optimality of the con- 
trol  limit policy remains an open problem. Some diffi- 
culties in  the  pursuit of such  a proof are discussed in [SI. 

B.  Performance of Controlled  Channels 

f ( i )  = 

In  this section we show the throughput-delay per- 
formance of controlled slotted ALOHA channels  under 
ICP,  RCP,  and  IRCP.  The following numerical  constants 
corresponding to a satellite  channel  are assumed. Note  that 
a satellite  channel  is  characterized by a large  round-trip 
channel  propagation  delay R (compared to ground radio). 
R will be taken to  be 12 channel  time  slots and each  time 
slot is 22.5 ms long, giving 44.4 slots/s. The above figures 
are computed  from the assumptions of a 50 kbit/s  satellite 
voice channel, 1125 bits/packet,  and  a  round-trip  channel 
propagation  time of 0.27 s for all  channel users. The  dura- 
tion of a channel  time  slot  is  assumed to be the same as 
a packet  transmission  time. From  our discussion in  the 
previous section, all  control policies considered below for 
ICP  and  RCP  are of the  CL  type. 

Choosing KO: Given an unstable  channel, the  through- 
put-delay  performance at  the operating  point ( n,,S,) is 
what we strive  to achieve through  dynamic channel con- 
trol.  Thus, it is  essential to  choose the  operating value of 
K to be Kopt or some KO which yields an operating  point 
close to  the optimum.  For the numerical  constants given 
above, K = 10 is an excellent choice and will be used 
throughout  this  paper  as  the  operating  value KO [l], [SI. 

Xpecifying a channel  load  line: The channel load line is 
a straight line  uniquely specified by  its  intercept  on  the 
vertical axis, M ,  and  its slope - l /u .  Alternatively, it 
may  be specified by M and  the  operating point (no,&',) on 
the equilibrium  contour  (instead of u)  . Thus, different 
load lines specified by  the same  channel  operating  point 
can  be compared by showing how  well they  approach  the 
throughput-delay performance at  the operating  point. 

150 F KO- 10 

O ' " ' " ~ . . . ~ . . . ~ ~ ~ . . . J  

KC 

0 50 100 150 200 

Fig. 4. RCP channel  performance versus Kc.  

Choosing Kc for RCP: In  RCP  the control  action  is to 
use a large enough value of K ,  namely, K,  which renders 
the channel  load  line  stable [l], [SI, [SI. We illustrate 
this  last  statement  in Fig. 4 in which the average  packet 
delay D given by  an optimal RCP policy is shown as a 
function of Kc.  Observe that for a sufficiently large Kc,  D 
is  quite  insensitive to  its exact  value except when So 2 
0.36, in which case D increases slowly with Kc.  Note  that 
for the same So, a much  larger Kc is  required for a larger 
M .  In  the  limit  as M + 00, RCP becomes ineffective since 
no sufficiently large  value of K can  be used for Kc.  Given 
a  channel load line,  a  suitable  value of K c  may  be  deter- 
mined graphically from a family of equilibrium  contours 
for different K [l], [SI, [SI. 

Channel  performance  under ICP and RCP control l imit  
policies: We show in Figs. 5 and 6 the channel  performance 
measures Sout and D over a range of ICP  and  RCP con- 
trol limits for M = 200 and So = 0.32, 0.36. Observe in 
Fig. 5 that a single control  limit minimizes D and maxi- 
mizes Sout as predicted by  the theory.  Note  the amazing 
flatness of Sout and D near the optimum  point, especially 
when So = 0.32. The consequence is that even if a non- 
optimal  control policy is used (due  to, for example, not 
knowing the exact  instantaneous backlog size such  as  in 
most  practical systems),  it is  still possible to achieve a 
throughputdelay performance close to  the  optimum. 
However, such  flatness of Sout and D is  not  as pronounced 
when X ,  is 0.36. The  optimum values of Sout and D given 
by  ICP  and  RCP  are approximately the same, but  RCP 
gives less severe degradation in channel performance when 
the control  limit policy is different from the optimal. 
However, recall from Fig. 4 the potential  disastrous  channel 
performance if Kc is  not sufficiently large. This  must  be 
taken  into consideration  in any system design using RCP 
since in a  practical  system both  the  parameters 2cf and u 
may change with  time. To provide the necessary design 
safety  margin,  a  much bigger value of Kc than deemed 
necessary may  have to be  adopted. In  Fig.  6, we show the 
degradation in channel performance when K c  = 200 is 
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Fig. 5. Channel performance versus ICP control limit for M = 200. 

used instead of Kc = 60. On the other  hand, M has rela- 
tively  little effect on the optimal ICP control  limit as 
shown in Fig. 7 (a). Thus, even if M fluctuates  in  time in 
a real system, the same ICP control  limit policy is still 
near  optimal. Of course, the optimum  channel performance 
must  deteriorate as M increases as shown in Fig. 7 (b) . 
In  the same figure, the  optimum D given by  ICP  and  RCP 
are  compared. RCP is found to be slightly better  than 
ICP. However, as M becomes large, Kc must also be large, 
in which case the  trend indicates that  ICP is superior to 
RCP. 

In  Figs. 5 and 6, we have also indicated  simulation re- 
sults for throughput  and delay. In  these  simulations, 
channel  control policies are applied  assuming that  the 
exact  instantaneous  channel backlog size N t  is known to 
all  channel users. However, contrary to  the Markovian 
model, each collided packet is assumed to  suffer the more 
realistic fixed delay of R slots and  its retransmission  ran- 
domized uniformly over the next K slots [4]. The  Marko- 
vian model is idealized since R is  assumed to be zero while 
each backlogged packet  retransmits  in  a  time  slot  with 
probability p .  (In  both cases, the same  average  retransmis- 
sion delay was used.) This excellent agreement between 
simulation and  analytic results  presented  here demon- 
strates  the usefulness of the Markovian model for a  slotted 
ALOHA system. 

Optimum  throughput-delay  tradeoffs: Optimum  through- 
put-delay  tradeoffs a t  fixed M are shown in  Fig. S for ICP. 
Note  that Sout is maximized and D minimized by  the  opti- 
mal ICP control  limit ri = 22 for a specific channel  load 
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0.1 
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up 

0.01 
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Fig. 6. Channel performance versus RCP control limit for M = 200. 
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Fig. 7. ICP and  RCP channel performance versus M.  
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Fig. 8. ICP optimum throughput-delay  tradeoffs at fixed M .  

line. Note how  close the ICP throughput-delay tradeoff 
curves  are  to  the  optimum envelope  obtained for the  in- 
finite population  model  in [4]. In fact,  the M = 50 trade- 
off curve lies a  little below the  optimum envelope. This is 
to be  expected since M = 50 actually gives rise to a  stable 
channel, in which case the  throughput-delay  performance 
at the  optinlum  operating  point is achieved. 

In  Fig. 9, optimum  throughput-delay tradeoffs a t  fixed 
values of u for RCP are shown. ( l / u  is the  average  think 
time of a  channel user.) In this case, increasing Sout cor- 
responds to increasing &I. Note  that  the channel per- 
formance  improves as  the  packet generation  probability u 
increases, since this implies that for the same Saut, the 
number of channel users is smaller and  these users are 
also less "bursty." 

IRCP channel  performance: Recall that  the  ICP  and 
RCP action  spaces are  both subspaces of the  IRCP action 
space. Therefore, the channel  performance  given by IRCP 
must  be  better or a t  least  as good as  that given by ICP 
or RCP. In Table I, we compare  these three control pro- 
cedures  for the  four channel  load lines involving M = 200, 
400 and (n,,X,) = (4,0.32), (7,0.36). Note  that  in  every 
instance, IRCP gives the best  performance. We also ob- 
served that  the optimal  control policy for IRCP is of the 
form 

i ao, 0 5 i 5 ril 

f(i) = ac, ril < i 5 6% (17) 

rc, r i z  < i 
which is uniquely specified by (hl,hz). Also, hl is either 
equal or very close to  the  optimal  RCP control limit  in 
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Fig. 9. RCP optimum throughpubdelay tradeoffs at fixed u. 

TABLE I 
COMPARISON OF ICP,  RCP, AND IRCP 

14 = 200 

S = 0.32 

(K = 60) 

R 

(18,56) IRCP ( f i l , A 2 )  

18 RCP R 

22  ICP 

ICP 0.31778 

SO"t 0.31817 

IRCP 0.31817 

ICP 

29.085 RCP D 

29.857 

IRCP 29.085 

M = 200 

S = 0.36 

(Kc = 60) 

18 

17 

(17.43) 

0.34925 

0.35217 

0.35213 

49.552. 

44.802 

44.712 

M = 400 

S = 0.32 

IK = 1501 

22 
23 

(23,116) 

0.31807 

0.31844 

0.31844 

33.096 

31.608 

31.608 

M = 400 

S = 0.36 

(Kc = 150) 

18 

22 

(23.91) 

0.34846 

0.34715 

0.34847 

69.237 

73.588 

69.215 

each case and  the use of r i z  brings  about  only  minor  im- 
provement  in  the  channel  performance  except  in  the case of 
M = 400 and So = 0.36. 

VI.  PRACTICAL  CONTROL SCHEMES 
The  optimum  throughput-delay  channel  performance 

given in  the  last section is achievable  over an infinite time 
horizon if the channel users have exact knowledge of the 
channel state  at  any  time.  In  a  practical  system,  the  chan- 
nel users often  have no means of communication  among 
themselves  other than  the multiaccess  broadcast  channel 
itself. Each channel user may  individually  estimate  the 
channel state  by observing the  (broadcasted)  outcome  in 
each  channel  slot.  However,  whatever  channel state  infor- 
mation available to  the channel  users is at least  as old as 
one  round-trip  propagation  delay ( R )  which may  introduce 
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additional errors in  the users’ estimates if R is large (such 
as  in a satellite  channel).  Thus,  the control  action  applied 
based  upon an estimate of the channel state  may  not 9Fces- 
sarily be the optimal  one at   that  time, which will then lead 
to  some degradation in channel performance. 

Below we first give a  heuristic scheme for estimating 
the channel state assuming that  the history  (i.e.,  empty 
slots, successful transmissions or collisions) of the channel 
is  available to all  channel users. The optimal ICP,  RCP, 
and  IRCP control policies may  be  applied based upon  this 
estimate.  A  heuristic  control  procedure is next proposed 
which circumvents the  state  estimation problem. These 
control procedures are  then examined through  simulation 
and compared with  the theoretical  optimum  throughput- 
delay  results  in the previous section. The  ability of these 
control procedures to handle  time-varying inputs  (with 
pulses) is also examined. 

A. Channel  Control-Estimation  Algorithms 

The channel  trajic in a  time  slot is defined to  be the 
number of packet  transmissions (both new and previously 
collided packets)  by  all users in that time  slot. Our heuris- 
tic scheme for estimating  the channel state is based  upon 
the observation that  the channel traffic in a  time  slot is 
approximately Poisson distributed. (See [6, ch. 4 and 
Appendix A].) Algorithms which implement channel 
control procedures using the Poisson channel traffic esti- 
mate will be referred to  as control-estimation (CONTEST) 
algorithms. 

We illustrate below a procedure for implementing RCP. 
Similar  algorithms for implementing ICP  and  IRCP are 
given  in [SI, [9], [lo]. Let ri be  the  RCP control  limit. 
Define 

Go = rip, + ( M  - ri). (18) 

6, = rip, + ( M  - r i )a.  (19) 

Go and 6, are  thus  the channel traffic rates when the chan- 
nel backlog size is ri packets  with K equal to KO and Kc,  
respectively. Assuming that  the channel traffic is Poisson 
distributed, we define the following critical  values  (cor- 
responding to  the probability of zero channel traffic in  a 
time  slot) : 

fo = exp [ -Go] ( 20) 

and 

f c  = exp [-G,]. (21) 

Since K ,  > KO we must have 

fo < fc. 

Suppose each  channel user keeps track of the channel 
history  (delayed by one round-trip  propagation time) 
within  a window frame of W slots.  Let ft be  the  fraction 
of empty  slots within the  history window for the  tth  time 
slot. J t  will  closely approximate  the  probability of zero 
channel traffic in  the  tth  time slot  provided that 1) the 
channel traffic probability  distribution does not change 
appreciably in ( W  + R )  time  slots, 2) that W >> 1, and 

3) that  the Poisson traffic assumption holds. We give the 
following CONTEST  algorithm to  be  adopted by each 
channel user. dt denotes the control decision at  time t. 

Algorithm 3 ( R C P - C O N T E S T )  : This algorithm gen- 
erates  the decision d t  = K,,K, a t  each time point based 
upon the channel state  estimate 7 and  the  RCP control 
limit r i .  Start  at  Step 1 or Step 4. 

Step 1: 

t t t + l  

dt  = KO. 

Step W: If Jt < fa, go to  Step 4. 
Step 3: Go to  Step 1. 
Step 4: 

t+--t+l 

dt  = Kc. 

Step 5: Iff8 > f,, go to  Step 1. 
Step 6: Go to  Step 4. 

The  channel  history  window: The size W of the channel 
history window kept  by each  channel user is very impor- 
tant for successful channel state estimation. If W is too 
large, we may lose information on the dynamic  behavior of 
the channel  such that  the necessary actions  are taken  too 
late. If W is too small, we may  get  large  errors in approx- 
imating  the  probability of zero channel traffic by  the frac- 
tion of empty slots  in the history window. A good initial 
estimate is that W should be bigger than R and of the same 
order of magnitude. Below we compare simulation  results 
on channel performance for different  values of W .  

To implement the channel state estimation  procedure, 
each channel user needs to  maintain  the channel history 
for W slots. Since it is only necessary to record whether or 
not  a  slot is empty, W bits of information suffice. A possible 
implementation  is  depicted  schematically  in  Fig. 10. The 
bit  string  stored in the  shift register represents the channel 
history  in a window of W slots. An empty channel slot is 
represented by “1” while a  nonempty  channel  slot is re- 
presented by “0.” In  the figure, the circle represents  a 
summer, the triangle an  attenuator,  and  the  square a  unit 
delay of one slot.  Simulation  results on the channel per- 
formance given by  the  CONTEST algorithms will be 
examined below. 

B. Another  Retransmission  Control  Procedure 
We describe in  this section a simplc heuristic  control 

procedure which has the  property  that  as  the channel 
traffic increases the retransmission  delays of backlogged 
packets will also increase. Hence, it will be referred to as 
the heuristic  retransmission  control procedure (heuristic 
RCP) . The  advantagn of such  a  control  procedure is that 
it is simple and can be implemented easily without  any 
need for monitoring the channel  history  and  estimating 
the channel state. 

Algorithm 4 (heur is t ic   RCP)  : For a backlogged packet 
with m previous channel collisions, the uniform retrans- 
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Fig. 10. Determination of fc. 

n&sion randomization4  interval is taken  to be K = K ,  
where K ,  is a monotone nondecreasing function in m. 

When the channel traffic increases, the probability of 
channel collision increases. A s  a result,  the "effective" 
value of K increases. If K,  is a steep enough  function in nr, 
we see that channel  saturation.wil1  be  prevented. 

C .  Sindatioa Results 
We summarize, in Tables I1 and 111, throughput-delay 

results  for the channel  load lines specified by (?zo,So) = 
(4,0.32) and flC = 300, 400. In  both cases, we assume that 
KO = 10 and K c  = GO. Included  in  these  tables  are 1) 
optimum  POLITE  results for ICP,  RCP,  and IIZCP, 2 )  
simulation  results  for ICP and RCP using  optimal  control 
policies and  under  the  assumption of perfect  channel state 
information, 3) simulation  results  for the  CONTEST 
algorithms using ICP  and  RCP optimal  control policies, 
and 4)  simulation  results  for  heuristic RCP.  The  duration 
of each  simulation  run was taken  to  be 30 000 time  slots. 
IRCP was not  tested by simulation since the optimal  value 
of ri, is in all cases so large that within the simulation dura- 
tion,  the channel state N t  (almost  surely) will not exceed 
it;  the control  procedure beconxs effectively RCP speci- 
fied by GI. 

The  ICP-CONTEST  algorithm was tested  with  channel 
history window sizes of 30, 40, 60, and SO time  slots.  We 
see from  Tables I1 and 111 that W = 40 appears  to give 
the best  throughput-delay  results.  Note that for R = 12 
and K = 10, W = 40 is  approximately  twice R + K.  

The  RCP-CONTEST  algorithm was also tested  with 
various  values of W .  In this case, K takes  on  two values, 
KO = 10 and Kc = 60. Thcre  is no clear-cut optinlal W .  
It appears  that W = 60 is  a good choice. There is no signi- 
ficant, degradation in channel  performance  (from the opti- 
mum) given by  the CONTEST algorithms and heuristic 
RCP.  The  CONTEST algorithms, however,  seen1 to have 
an edge  over  heuristic RCP.  The excellent performance of 
the  CONTEST  algorithms  can  be  attributed  to  the flatness 
of Sout and D near the  optimum as a function of the control 
limit (see Figs. 5 and 6) .  We found that  this flatness 
property is less pronounced for channel  load lines with a 
large  value of So or M ,  such as So = 0.36 or M = 400. 
This explains the more significant degradation  in  channel 
performance given by  the  CONTEST  algorithms shown in 
Table 111 for A.ir = 400 than  in  Table I1 for M = 200. 

For an uncontrolled  slotted ALOHA channel, i t  is 
shown  in [6] that a channel input  rate of 0.8 packet/ 

function i n  'm. 
Or, equivalently, p = p ,  where pm is a monotone nonincreasing 

TABLE I1 
THROUGHPUT-DELAY RESULTS OF A CONTROLLED CHANNEL 

( M  = 200, So = 0.32) 

CONTROL  SCBEME c 
-out 

D 

ICP  (POLITE) 0.3178 29.9 

RCP  (POLITE) 0.3182  29.1 

IRCP  (POLITE) 0.3182 29.1 

ICP (Simulation) 0.315  33.4 

RCP  (Simulation) 0.318  28.8 

ICP-CONTEST W = 20 

ICP-CONTEST W = 40 

ICP-CONTEST W = 60 

ICP-CONTEST W = 80 

RCP-CONTEST W = 20 

RCP-CONTEST W = 40 

RCP-CONTEST W = 60 

RCP-CONTEST V7 = 80 

0.314 

0.315 

0.317 

0.318 

0.315 

0.322 

0.319 

0.317 

40.9 

30.5 

32.4 

35.8 

33.1 

33.3 

32.1 

32.5 

K = 10 0.316 33.7 

{Kl = 60 "22 0.315 34.6 
Heuristic  RCP 

("1 = lo 
0.310 35.4 

0.316  34.6 

TABLE I11 
THROUGHPUT-DELAY RESULTS OF A CONTROLLED CHANNEL 

( M  = 400, So = 0.32) 

CONTROL  SCHEME 
Sout 

D 

ICP  (POLITE) 0.3181 33.1 

RCP  (POLITE) 0.3184 31.6 

IRCP  (POLITE) 0.3184 31.6 

ICP  (Simulation) 0.315 31.4 

RCP  (Simulation) 0.317 31.0 

ICP-CONTEST W = 20 0.315 43.3 

ICP-CONTEST M = 40 0.314 34.7 

ICP-CONTEST W = 60 0.312  53.2 

ICP-CONTEST W = 80 0.316 39.1 

RCP-CONTEST W = 20 0.313  41.1 

RCP-CONTEST W = 40 0.319 43.4 

RCP-CONTEST W = 60 0.318 38.8 

RCP-CONTEST W = 80 0.317  40.1 

RCP-CONTEST W = 100 0.314 35.7 

RCP-CONTEST W = 120 0.319 47.1 

K = 10 0.316 45.2 

Heurlstic  RCP { :  K = 150  m22  0.316 44.8 

0.312 42.0 

0.311 43.1 
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TABLE IV 
SIMULATION RUN FOR IRCP-CONTEST SUBJECT TO A CHANNEL 

INPUT PULSE 
INPUT PARAMETERS: 

NUMBER OF TERMINALS M = 400, PROPAGATIOtI DELAY R = 12 
FOR THE TIME  PERIOD 1-1000. INPUT RATE Mu = 0.3232 
FOR THE TIME  PERIOD 1001-1200, INPUT RATE L40 = 1.0 
FOR THE TIME  PERIOD 1201-6000, INPUT FATE Mu = 0.3232 

KO = 10, KC = 150, WINDOW S I Z E  W = 60 
RETRANSMISSION CONTROL LIMIT = 23, INPUT CONTROL LIMIT = 116 

AVERAGE VALUES I N  200 TIME  SLOT  PERIODS: 

903 

1 - 200  0.230 0 
201 - 400  0.325 

0.625  30.2 
0.100 

5.5 
34.0 0 

401 - 600  0.285  0.450 0 
6.9 

601 - 800 
23.6 

0.235 
2.8 

0.625  31.7 0 
801 - 1000 5.3 

0.325  0.850  42.5 0 
1001 - 1200 3.3 

0.205 
1201 - 1400 2.345 

0.345 
524.3 

1.330  389.6 
50.0 
75.2 

43 
13 

1401 - 1600  0.355  0.880  188.1  51.5 0 
1601 - 1800  0.375  0.735  179.3 0 
1801 - 2000 0.225  1.295  297.8  33.7 5 

34.9 

2001 - 2200  0.325  1.005  530.1  35.3 
2201 - 2400  0.380  0.905  121.3 0 

21 

2401 - 2600  0.305  0.485  27.6 
16.7 

0 
2601 - 2800 3.1 

0.290  0.430  20.8  2.3 0 
2801 - 3000 0.345 0 
3001 - 3200  0.300 

0.745 
0.455 

35.3  7.2 
0 

3201 - 3400 
17.6 

0.280  0.615  28.4  5.6 0 
2.4 

3601 - 3800 
3401 - 3600  0.330 

0.330 
3801 - 4000  0.300 
4001 - 4200  0.315 
4201 - 4400  0.335 
4401 - 4600  0.300 
4601 - 4800  0.280 
4801 - 5000  0,285 
5001 - 5200  0.330 
5201 - 5400  0.335 .~ 

5601 - 5800 
5401 - 5600  0.335 
5801 - 6000 

0.275 
0.285 

0.810 
0.655  30.6 5.6 0 

37.9  7.9 0 

0.390 0 
0.615 

19.3 
29.2 

1.7 
5.1 0 

0.600 24.5 4.5 0 
0.450 24.3 0 
0.480 25.2 3.7 0 

2.6 

0.585  32.0 0 
0.570 

5.3 
26.4  4.3 0 

0.550  23.6  3.7 0 
0.640 28.8  0 
0.410  21.5  2.4 0 

5.2 

0.445  22.3  2.7 0 

slot  sustained for 100 time  slots  is enough to cripple the 
channel indefinitely. In  Tables IV  and V, we show by 
simulations that under similar but more severe pulse over- 
load  circumstances both  the  IRCP-CONTEST algorithm 
and heuristic RCP prevented the channel  from going into 
saturation. In  these simulations, the normal  channel  load 
line was given by M = 400 and (no,So) = (4,0.32) both 
before and  after  the pulse. During a period of 200 slots 
(namely.  the  time period 1000-1200 shown in  the  tables) 
the packet  generation  probability Q was increased such 
that Mu = 1 packet/slot. Observe that  both algorithms 
handled the sudden influx of new packets  with ease. In  
both cases, the channel throughput, instead of vanishing 
to zero as in an uncontrolled channel, maintained a t  a high 
rate  and within less than 3000 slots, the channel  returned 
to  almost  normal  operation. 

D.  Discussions of Results 
In  an actual  system, the channel user population and 

their  transmission  requirements will typically  fluctuate 
with  time. We must emphasize the  fact  that  the control 
algorithms considered have been designed to control  statis- 
tical  channel  fluctuations  under the  assumption of a sta- 
tionary  channel input. Although we showed that  they  can 
temporarily  handle  very  high  channel input  rates, addi- 
tional  control mechanisms should be designed into  the 
system to  make  sure that channel overload conditions do 
not prevail for long  periods of time  (e.g., by limiting the 
maximum  number of users who can “sign-on” and become 
active  channel users). 

We showed earlier that  IRCP gives a  channel perfor- 

TABLE V 
SIMULATION RUN FOR HEURISTIC RCP SUBJECT TO A CHANNEL 

INPUT PULSE 
INPUT PARAMETERS: 

NUMBER OF TERMINALS M = 400, PROPAGATION DELAY R = 12 
FOR THE TIME  PERIOD 1-1000. INPUT RATE MLT = 0.3232 
FOR THE TIME  PERIOD 1001-1200. INPUT FATE Ma = 1.0 
FOR THE TIME  PERIOD 1201-6000, INPUT  FATE Mo = 0.3232 
K = 10 K = 150 (m 2 2 )  

AVERAGE VALUES I N  200 TIME S W T  PERIODS: 

T i m e   P e r i o d   T h r o u g h p u t  __ T r a f f i c  
rate ra te  

Average 
Backlog - - 

1 - 200  0.285  0.395  19.8 
0.320  0.330  16.3 
0.255  0.425  22.8 

201 - 400 
401 - 600 

2.1 
1.2 
2.8 

601 - 800 
801 - 1000 26.1 4.0 

28.5 
1001 - 1200  0.230  34.1  68.8 

5.7 

1201 - 1400 
1401 - 1600 141.3  112.6 

273.1  91.8 

0.290  0.475 
0.325 0.570 

2.395 
1.695 
1.500 

0.285 
0.310 

1601 - 1800  0.375  1.415 
1801 - 2000 0.280 1.110 224.6  53.1 

68.5 

2001 - 2200  0.360  1.240  257.3  48.8 

288.6 

2201 - 2400  0.355  0.925  193.9  31.3 
2401 - 2600  0.385  0.655 
2601 - 2800  0.320 
2801 - 3000  0.280 

122.8 
0.565  68.0 
0.420  39.3 

15.2 
8.8 
5.6 

3001 - 3200  0.295  0.495  31.6  6.3 
3201 - 3400  0.265  0.680 
3401 - 3600 0.350  37.0  13.3 0.750 

11.7 45.0 

3601 - 3800 0.310 
3801 - 4000 
4001 - 4200  0.330 
4201 - 4400  0.325 
4401 - 4600 

0.465 
0.275  0.520 

65.2  8.2 
33.6 7.7 

0.480  34.6 
0.615 

5.2 
29.5 7.5 

0.310  0.525  38.6  1.6 
4601 - 4800  0.260 
4801 - 5000 
5001 - 5200 

0.705 
0.375  0.720 
0.350  0.635 

44.2 
63.5 
41.7 

15.3 
11.1 
9.0 

5201 - 5400  0.285  0.475  23.3  6.6 
5401 - 5600  0.315 
5601 - 5800 
5801 - 6000 

0.510 
0.290  0.425 
0.305  0.490 

36.4 
24.1 
28.7 

4.3 
4.1 
4.7 

mance at  least  as good as  ICP  and  RCP. Comparing TRCP- 
CONTEST  and heuristic RCP, we see that  the  latter is 
easier to  implement. However, under  a  normal load (say 
So 5 0.32), IRCP-CONTEST is superior to heuristic 
RCP.  This is because heuristic RCP introduces longer 
delays to collided packets even when these  packets  are 
merely unlucky  in  light  channel traffic. On the  other  hand, 
with IRCP, control  actions  are not exerted  until the chan- 
nel traffic exceeds certain  “dangerous” levels. 

VII. CONCLUSIONS 

In  this paper,  a  Markovian decision model has been 
formulated for the dynamic  control of slotted ALOHA 
random access channels. It is shown that optimal  station- 
ary policies exist. Furthermore, an optimal stationary con- 
trol policy maximizes the  stationary channel throughput 
rate  and minimizes the average  packet  delay  simultane- 
ously. An  efficient computational  algorithm (POLITE) is 
developed which utilizes Howard’s policy-iteration method 
and is capable of solving for an optimal stationary policy 
in  a small number of computational  steps.  Numerical 
results for the control procedures ICP,  RCP,  and  IRCP 
indicate that optimal  control policies are of the control 
limit  type, but a rigorous mathematical proof of this 
result in general remains an open problem. Throughput- 
delay  tradeoffs given by  optimal control policies are also 
presented.  These  throughput-delay  results  are  very close 
to the  optimum performance envelope in [4] and  are 
achievable over an infinite  time horizon for originally 
unstable channels. Since in a  practical  system the exact 
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instantaneous  channel state is not known but nlust be [61 s. s. Lam,  “Packet switching in  a multi-access broadcast 

estimated,  channel  control-estimation (CONTEST) algo- 
channel with application to satellite communication in  a com- 
puter network,” Ph.D. dissert,at,ion, Comput. Sci. Dep., Univ. 

rithms  based  upon  a  Poisson channel traffic & h a t e  are [71 R. M. Metcalfe, “packet comm,~nication,~~ Massachusetts of California, Los Angeles, Mar. 1974. 

proposed. A heuristic retransmission control  algorithm is Inst. Technol., Cambridge,  Project MAC Tech.  Rep. TR-114, 

algorithms  are  capable of achieving  a  channel  throughput- in a random multi-access broadcast  channel,”  in Proc. 7th 

well as capable of preventing  channel  saturation  under [9] S. S. Lam  and rJ. Kleinrock, “Dynamic control schemes for a 
temporary  overload  conditions. packet switched multi-access broadcast  channel,” in 1975 Nut. 

The problem of unstable  behavior  is  very  real in  random 
Comput.  Conf., A F I P S  Conf. Proc., vol. 44. Montvale, N. J.: 
AFIPS Press, 1975, pp. 143-153. 

systems (e.g., ALOHA [ 2 ] ,  slottecl ALOHA, carrier [lo] ---, “Packet switching  in  a multi-access broadcast  channel: 

sense multiaccess [16], etc.) . To guarantee an acceptable 
Dynamic  control  procedures,” T. J. Watson  Res. Center,  IBM 
Corp..  Yorktown  Heights. N. Y.. Res. Reo. RC-5062. Oct.. 

suggested‘ Simulations indicate that these [8] L. KleiIlrock and S. S. Lam, “On stability of packet  switching Dec. 1973. 

delay  performance close to  the theoretical  optimum, as Hawaii  Int. C0n.f. SYSl. SCi. (Special Subconf. ComPut.  Nets), 
Univ. of Hawaii,  Honolulu, Jan. 1974. 

level of channel  performance for such  systems, some form 
of dynamic  channel  control is a must.  The probabilistic 
model and dynamic  channel  control schemes introduced 
herein for a  slotted ALOHA channel  can  probably be ex- 
tended to  study  stability  and dynamic  control problems of 
other  random access systems. 
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